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ABSTRACT  Three test series of single-edge notched beams in three-point bending were
conducted to evaluate the fracture energy of concrete. The fracture energy was determined
from the area under the complete load versus load-point deflection diagram. The nonlinear
Fictitious Crack Model was implemented in g finite element analysis, showing good agreement
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with the experimental data,

By varying the notch depth and the beam depth it was shown that the fracture energy, Y
traditionally presented as a material property, depends upon the specimen size and Chs
configuration, This is attributed to the energy dissipation in the process zone which is not 'f}r
accounted for in the analy tical model, o
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" INTRODUCTION =3
[ ]
L) P
4 Classical linear elastic fracture mechanics (LEFM), which has been e,
,f successfully applied to metallic and brittle materials, is limited when ::'_5
n applied to concrete. LEFM cannot model the behavior of small specimens "\"
. of the size typically used in laboratories. As a consequence, several _
f‘ nonlinear models have been developed which approximate LEFM for large '?."::
:.' sizes. The two best known models are the fictitious crack model (FCM) '::’.
~- introduced by Hillerborg et al. (Ref 1), and the smeared or crack band _'
é model (CBM) introduced by Rashid and developed by Bazant et al. (Ref 2, ::
:' 3, 4, 5). Among others, the two-parameter model by Jenq and Shah \;"'
i. (Ref 6) is more recent and is supported by only limited data. ':::.
;g: In finite element applications, CBM approach shows a dependency on g,
the element size used in the mesh. Results do not converge in succes-
, sive analyses where the element size is continuously reduced. This '{
§ problem can be circumvented by linking the softening stiffness of the o
bl cracked elements to the fracture energy Ge. However, G determined from .
@ the load-deflection diagram is suspected to depend on specimen geometry ;_
;. and size (Ref 5). The FCM is also based on Gf, which is assumed to be a ;’:_
' material property. s
3’ The existing approaches for determination of the fracture energy ::'.g
. are evaluated in this report and a new test method proposed. Three ,‘
~,; series of tests and a finite element analysis using FCM were conducted. :x,";
[ The objectives were: &_
o v
5 ® Calculate the fracture energy following RILEM Technical ,.
o Committee 50-FMC guidelines (Ref 7) and compare it to the oy
:' fracture energy, Gf*, according to a method presented in ’.~
P this report. L
®
:':: .‘
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¢ Conduct a finite element analysis with different strain

J
softening relations based on the experimental value of Gf. BN

¢ [Determine the effect of notch-to-depth ratio and specimen
q size on Gf. A

EVALUATION OF THE FRACTURE ENERGY G

f 8bfn

For a beam in three-point bending (Figure la), the load typically *5:3

' varies with load-point deflection (LLPD) as shown in Figure 1b. tﬁ;;
The LLPD plot comprises three stages of behavior. The deflection J~§
increases linearly with the load in the first stage and the crack is 1:g:

; opened but does not extend. A fracture process zone develops during the ;-’
: second stage where microcracks form and slow crack growth is apparent. Q}_%
i In the third stage, known as the strain softening zone, rapid crack Ay
growth is evident. During strain softening most of the damage to the 38:$

specimen is concentrated in a narrow zone. This concentration is higher ;é%%
as the load carrying capacity decreases and energy dissipation even- gifi
tually occurs through a single major crack. Strain softening has been ﬁ::f

considered a material characteristic. NN

The area, Uo’ under the LLPD curve (Figure 2a) represents the Fﬁ&

! energy required to break the specimen. For a single-edge notched beam :ﬁ:
in three-point bending, RILEM TC 50-FMC defined the fracture energy, Gf, &VE

as: t'a:\
"W’.\
G = (U + mgd_)/A EE‘
Y

where A = ligament area = B(W-ao) :E:Eﬁ

B = width ?'f,‘

W = specimen depth EE_

z

4
»

a_ = notch depth

&
by

':10

mg = weight of the specimen

d = load-point deflection at fracture Y
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Figure 1. Specimen schematic and load versus load-point deflection
plot.
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This definition relies on the assumption that all the energy re-
quired to break the specimen 1is transformed into surface energy by
extension of a single macrocrack. However, energy dissipation outside
of the fracture zone is included in the determination of Gf and should
not be overlooked. This energy depends on the specimen size and notch
depth. It is dissipated in creating and extending a process zone by
debonding aggregates and opening microcracks. Most of this energy con-

sumption is believed to occur during slow crack growth. Consequently,

*»%:. ‘

A Y YY)
LTTIL

using the whole area under the curve leads to an overestimate of Gf‘

.
a0 ®
£ -

TEST METHOD

b

'
o

L, Ry Ry
5

From the preceding observations it was concluded that an improved
measure of the toughness of concrete would be obtained with a three-

b T Yl !

point bend beam specimen and the following procedure:

o

" Fle e

1. Set up the beam with the notch on the top surface. This will

help in applying dye into the cracked surface for determining crack
growth.

Y
P A4
S

5L 8T,
P A
.‘l_-“

g
olels!

2. Load the specimen up to the point of instability defined as the
point past peak load where the load drops ofi to 95 percent of its maxi-
mum value, then remove the load completely. The area enclosed in this
Toad-unload loop includes the energy spent on formation of a process

zone, slow crack growth, and the inelastic energy spent outside of the
crack zone.

NP

A A A %y

', ("l:rl'l;l“. :.(‘)‘\ " s N
0t 20, ® b

"i':l :f

3. Insert dye through the notch and allow it to flow into the
crack to highlight the crack length, ap, at the point of instability.

"
|

T
)
v

.
a2, ]

)
»

k]
Fa)
)

4. Reapply the load and obtain the strain softening zone. A one-

time unloading and reloading will not significantly affect the LLPD
curve.
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5. Define U as the total area under the LLPD curve minus the area

<
It

A

in the load-unload loop indicated in the second step (see Figure 2b).

]

6. Define Gf* as the energy spent on developing one major crack

divided by the ligament area existing at that moment:

&

Gg* = U/B(W-a ) i

DETAILS OF EXPERIMENTAL METHODOLOGY )
Fracture Area ’

During the strain softening process a crack will actually follow a A
surface which is not flat but governed by the aggregate size and rela- ~
tive hardness compared to the mortar matrix. An invariant Gf will be TS
obtained using the ligament area, B(w-ao), if the total energy spent in
the formation of a unit projected area is constant (as assumed in the
RILEM approach), or if the energy spent other than in formation of the -

o,

macrocrack is discarded (as attempted here). ?qh
Precracking @

Precracking of the specimen (or fatigue cracking) is not necessary
in the proposed method. Measurement of the energy takes place only
after a sharp crack has been formed, and does not depend on the initial @

condition, whether it is precracked, form notched, or saw notched. r“‘i.
Rate of Loading $ﬁ:,.

RILEM recommends reaching peak load after 30 to 60 seconds which )
4 NP d
in./sec). SN,

The work of fracture and the strain energy release rate increase By

corresponds to a rate on the order of 5 x 10_6 m/sec (2 x 10~

slightly (about 15 percent) for cross-head deflection rates from 5 «x ..
10_7 to 5 x 10—5 m/sec (2 x 10~

5 3 e 3

to 2 x 10 ° in./sec) (Ref 8). A
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{ Beam Weight

s
r

r By supporting half of the beam weight at the ends, a complete LLPD €§E£
{ curve is obtained. The LLPD curve actually begins after the applied EE“
Toad equals half of the specimen weight. In the LLPD plot the effect of ﬁhﬁ
beam weight is easily identified and discarded from the total area under [
the curve (Figure 6). This discarded area (1/2 weight x midspan deflec- :2:*
tion at total fracture) corresponds to work being transformed into po- EEE'
tential energy as the center of gravity of the beam is forced up. ;ng
e
SR,

Displacement and Support Indentation

2w
l’ ‘.' ’
2

3
(]

According to RILEM, the midspan deflection can be measured with

reference to the loading apparatus as long as the inelastic indentations

at the load points do not exceed 0.01 mm (0.0004 in.) (Ref 7). For E::
nonstandard specimens with small span/depth ratios (e.g., S/W = 4) the ;:

~
inelastic indentations at the loading points are not negligible. They f:»

have to be considered or else the defiection due to Toad indentations

has to be measured.

)
el A

The error caused by inelastic indentation is estimated for a 27.65 ::\;
MN/m2 (4,000 psi) concrete specimen with dimensions 102 by 7 by 76 by E;Ef
406 mm (4 by 3 by 16 in.) (depth by width by span), with an initial .o
notch depth a, = 25 mm (1 in.) and bearing directly on 51-mm (2-in.) ;S;S
diameter rollers. A maximum load of approximately 3.12 kN (700 1b) &E;:
should be expected. The minimum bearing area at the center roller is :$~j$
3.12/0.02765 = 113 mm2 (0.175 in.z) and the minimum bearing width is : ;_
113/76 = 1.5 mm (0.058 in.). This implies an indentation of the flat Etﬁh
surface at the center roller only of 0.75 x 0.75/25.5 = 0.022 mm (about 3;$i
0.001 in.). In this case the indentation represents about 25 percent of ﬁlQ
the midspan deflection at peak load. ;!L

The clip gage described by ASTM E399 seemed most appropriate for

R Y
.

accurate displacement measurements. Clip gages were manufactured out of

high strength aluminum (7075-T6) which was more readily available and

easfer to machine than a titanium alloy as recommended by ASTM. High

strength aluminum presents a ratio of yield strength to modulus of

~J

...................
-----

-'"f;"'r:f;f.:( g7 A

............




s
14

...:
't
ma
elasticity as high as 0.00693. High strength aluminum ensures a large ;ﬂhﬁ
range of measurement without permanent deformation of the gage. Two Q*’
clip gages were employed, one on each side of the specimen, to mitigate ey
errors due to asymmetry.
Point of Instability
The point of instability was chosen as the point after maximum load .
where the load decreases to 95 percent of its peak value as recommended ; A
by Swartz and Yap (Ref 9). A small variation of load near peak value is .
accompanied by a small displacement on the LLPD curve; however, this :;f;
small amount of external work causes a significant crack advance. This ;&E;
is apparent on typical load versus crack mouth opening displacement th'
(LCMOD) plots (Ref 9) where the CMOD increases significantiy for almost Tu!)
constant maximum load. This instability is attributed to a redistribu- i}%%
tion of the elastic energy to surface energy inside the specimen. Thus, ::;l
it is necessary to measure crack length past peak load to yield reliable E;%;
and stable values. :_.;..
o
RS
-::_‘.:.{.
TEST SETUP s
K
The test setup is shown in Figures 3 and 4. Figqure 5 is a photo- E:Ei%
graph of an example specimen. Figure 3 shows the beams were tested witn jE:E&
the notch on the top surface. The beam weight was supported by four a:y
springs aligned with reaction rollers. The rollers were located on ,_f:_
bearing pads to minimize energy dissipation at the bearing points. Eiéxz
The load was applied through a closed-loop, servo-controlled, ﬁtﬁ;‘
20 kip, MTS testing machine. The tests were displacement controlled i}if
with a cross-head displacement rate of approximately 5.10—6 m/sec ?332
(2.107% in./sec). R
B
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Figure 3. Set up schematic.
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Two clip gages with a sensitivity of 0.0025 mm (0.0001 in.) were ,'hu?
installed across from the load point. The clip gages bore against two .
aluminum beams which span across the reaction points (Figure 5). Tight gﬁ Qk
fitting slots and holes machined in the frame allowed for rotation and ”'ﬁjﬁ
horizontal displacement without vertical movement and negligible fric- jhkﬁ
tion. _.h
In order for the forces on the beam to be statically determinate, gﬁt‘,
the two reaction rollers bore on a cylindrical surface whose axis was g?:#
perpendicular to the rollers' axis. Thus, obtaining a single point of 5 %
contact equivalent to spherical bearing. _.._‘
An important advantage of the setup lies in obtaining the long tail ,:2§
of the LLPD plot (Figure 6), representing not only the beam weight but 'ﬁggﬁ
also other similar effects (such as clip gages weight and reaction) as ¥ ;5‘
well as possible constant friction. If some variable effects are pre- "{;i

sent during the test, these can be evaluated by observing the linearity

XX

of the plot after the load carrying capacity of the beam has been spent.
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Three series of tests were conducted. RILEM guidelines were fol-

lowed in all tests for maximum aggregate size, conditions of storage,

support and loading arrangement, accuracy of measurement, and rate of s
loading. L
The concrete mixes with their mechanical properties are given in oYy
Table 1. The maximum aggregate size was 10 mm (3/8 in.) in all cases. ®
The initial modulus of elasticity in compression, E, is also tabulated. S

Series I SN

Twelve baseline beams (similar to RILEM's smallest specimen) were N
cast with dimensions of 102 by 102 by 788 by 838 mm (4 by 4 by 31 by ,:5~i
33 in.) (width by depth by span by length) (Figures 1 and 3). The A
notch-to-depth ratio, ao/w, was 0.5, During the tests, the beams were
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Table 1. Material Properties

Cement | Water [ M/C 10 mm Gravel| Sand f! f E

Series (kg/m3) (kg/m3) (%) (kg/m3) (kg/m3) (MPa) | (MPa) | (GPa)

I 279 167 0.60 1062 907 29.01 3.1 21.7

11 613 245 0.40 1034 443 58.9| 4.2 24.5

111 400 220 0.55 1044 540 33.1| 3.5 19.7
Notes:

The compressive strength, f ', was obtained at 28, 35, and 30 days,
respectively for each serie§. In every case, three 152- by 305-mm
(6- by 12-in.) cylinders were tested.

The tensile strength, f,, was obtained at 28, 32, and 29 days,

respectively, using the same type of cylinders. Six splitting

tensile tests were performed for Series I, then only three each
for the other series due to the uniformity of the values.

The modulus of elasticity was calculated by measuring the cylinders
strain at the beginning of the compression tests.

unloaded past peak load and both Gf and Gf* obtained. The beams were
tested in four groups of three after curing for 27, 28, 29, and 32 days

in a fog room.
Series II

Twelve additional specimens with the same overall dimensions as
Series I were prepared. They were divided into three groups of four
beams with the same ao/w. The initial notch-to-depth ratio was 0.3,
0.5, and 0.7 for groups 1, 2 and 3, respectively. In order to isolate
the effect of notch depth from the effect of curing time one specimen of
the four from each group was tested on the same day after curing for 28,
29, 32, and 33 days.
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Series III

The third series consisted of four additional baseline specimens
(same dimensions as series I with ao/w = 0.5) plus four specimens with
depths of 216 mm (8.5 in.) but with the same width, span, length, and
ao/w. While not geometrically similar to the standard RILEM specimen,
the *-crease in ligament area (unbroken area at the notch) demonstrated
the size effect on Gf.

One baseline specimen and one deeper beam were tested each day
after curing for 28, 29, 30, and 32 days.

ANALYTICAL REPRESENTATION WITH FINITE ELEMENTS

The finite element program, ADINA (Ref 10) features user-supplied
loading which can be expressed as an arbitrary function of nodal dis-
placements. This allowed the implementation of an FCM approach. The
element mesh was derived from Reference 11 and is shown in Figure 7.
Due to symmetry, only half of a beam needed to be discretized. The
notch-to~depth ratio, ao/W, was chosen as 0.5. The beam was loaded in
displacement control (both in the program and in the actual tests) and
whenever the tensile strength, ft’ was reached at a node, the node was
released and the midspan displacement was step increased until another
ft was exceeded at another node. This iterative process was continued
until the crack progressed across the beam cross section.

The modulus of elasticity, E, used in the finite element analyses
was measured as the initiation slope of the stress strain diagram of a
compression test on a 152 - by 305-mm ( 6- by 12-in.) cylinder. Others,
including Peterson (Ref 12), have used the dynamic modulus of elas-
ticity, Ed’ for analysis. The difference between dynamic and static is
small (Ed is about 10 to 20 percent higher than E) and the loading rates
between the cylinder tests and the three-point bend (3PB) tests is with-
in one order of magnitude. Small differences have also been reported
between tests carried out in tension compared to compression (around 10
percent lower according to Reference 13). Hence, E was chosen as the

modulus of elasticity of the equivalent homogeneous elastic material.
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Four stress versus crack width (¢ versus w) relations were analyzed

and are described in Figure 8. The straight line (SL) and bilinear or
concrete (C) relations were proposed by Peterson (Ref 9), the exponen-
tial (E) relation is proposed by the authors (from curve fitting rela-
tionships derived in Ref 11 and 14), and the power function (P) by
Reinhardt (Ref 15). 1In all cases, the relations conform to:

Ge = f: o dw

as recommended by Hillerborg et ai. (Ref 1).

RESULTS
Test Series I

Values of Gf*, peak load, deflection at peak load (dp), and deflec-
tion when the Tload carrying capacity of the beam vanishes (do), are re-
ported in Table 2. The increase in crack length, Aa (measured by dye
insertion) is also indicated. In some cases the closed loop servo con-
trol on the testing machine did not allow the unloading to take place
immediately after the maximum load (when it decreases to about 95 per-
cent of its peak value), so experimental values were not reported.

The LLPD plots were drawn until a long horizontal trace was ob-
tained (Figure 6), indicating that the beam was not carrying any load.
The noise and random friction then measured showed an effect of about
+4 N (%1 1b).

Dye 1insertion highlighted a crack front which appeared fairly
straight. Typically the dye was inserted from the top, but in a couple
of cases excess dye was allowed to run along the sides of the beam. In

those cases the crack front appeared curved due to dye absorption on the

sides.
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Table 2. Results - Series I
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Series II results are detailed in Table 3. A strong dependency of
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Gf on ao/w is apparent with variations of about 25 percent (from its
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value at ao/w = 0.5). Gf decreases as ao/w increases. It should also
be noted that Gf* follows Gf closely.

Test Series III

Series III results are reported in Table 4. An increase in Gf of
about 24 percent is observed when the depth is increased from 102 to 216
mm (4 to 8.5 in.).

Finite Element Analysis
Figure 9 shows the average LLPD plot from the 12 tests of Serijes I

(solid trace) and the approximations from finite element analyses car-

ried out using the four different o versus w relations.
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DISCUSSION UMM
LA
i [ J
Effects on G¢ RO
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The variation of Ge with notch depth and beam depth indicates that ﬁ}}‘}«
the fracture energy is not a material property and is dependent on the i
f'_‘-' o, X
specimen configuration. When modelling concrete as an equivalent homo- c{:¢;
geneous linear elastic material, all the energy supplied is assumed to :iﬁ?ﬁ
be converted into surface energy by propagation of a single macrocrack. jﬁk{i
The microcracking in the process zone also dissipates energy that the :\‘s
ERTN
model cannot take into account. The process zone depends upon the ;:a;f,
PGS
stress field which is dependent on the geometry (Ref 16). The process ::ﬂ -]
zone depends upon the aggregate-to-specimen size ratio which is a size :iﬁfj
parameter (Ref 4). This dependency raises a question about the reli-
ability of using a specimen in three-point bending instead of in direct Sﬁ?ﬁﬁ
L] \ )
tension to determine the stress versus crack width relation. :EE“\.
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Table 3. Results - Series II
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Table 4. Results - Series III
# .

N e P T Ll P eSS B TN e
1 76.6 | 76.8 509 90 0.14 | 2.9 7.9

3 81.9 ~ 958 - 0.16 | 2.9 -
102 5 71.6 | 70.6 908 89 0.15{ 2.9 7.9
7 59.2 | 58.2 793 92 0.12 | 3.0 3.2
Mean 72.3 | 68.5 892 90 0.14 | 2. 6.3

2 84.7 - 3795 - 0.09 | 1. -

5 89.5 - 3900 - 0.10 2.2 -

216 8 90.7 - 3875 - 0.11 | 1.9 -
11 92.2 |85.7 3580 89 0.10 ] 2.0 7.2

Mean 89.3 | 85.7 3788 89 0.10| 2.0 7.2

Sensitivity analyses (Ref 17) and further analyses by the authors

Gf as it is to variations of the other parameters.

!

Vot A AT T s R N S S R R R S S L s U R TR R L S L L C L LA O STR LA ST AL
B E s R R R e s e o P e S

does appear to dissipate through crack surface formation ensuring the
validity of the model.

*
Gf versus Gf

Gf* was defined in an attempt to quantify and eliminate the energy
dissipated outside of the crack zone. The strong variation of Gf with
ao/w seems to indicate a dependency on the stress fieid, i.e., an energy
dissipation through microcracking in the process zone which is greater
than indicated by Gf*. For standard specimen sizes, the difference be-
tween Gf* and Gf is about 5 percent while the fracture energy shows
variations in the order of 25 percent. Furthermore, both values vary in

the same manner and show size and geometry dependency. The proposed
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approach does not seem to discard all the energy spent in the process gﬁi
zone. Further research is needed to refine the model. Given the ad- v‘L\
L
ditional steps involved in its evaluation, Gf* does not appear to pre- hé;f
A
sent any practical advantage over Gf. QE;J.
3
Crack Front L
15
}& h
o
The crack front appearance seems to be linked to the dye impregna- Viiw
tion procedure. When the dye was inserted only from the top, the crack F;? 4
front appeared straight. 1In a few cases the dye was inserted from the 2
]
sides and the top, and then the front appeared curved (Ref 16). The o y
latter crack front appearance seemed to indicate an anisotropy of the b-
process zone where the microcracks would tend to merge laterally before ;yﬂfﬁ
joining the macrocrack. In the determination of G.* a straight front e
was assumed. ffﬁ:f
1-.."\'
":h. (]
Analytical Model ';fl
 J
Pt
The good agreement between the ascending part of the LLPD curve of 3:"
\
the average experimental plot and the model results supports the accent- Eﬁf‘
TN
ability of using E from standard cylinder tests. This is an advantage :i;f‘
since E is more readily available than Ed. N
o
rmong the different o versus w relations, the SL is the coarsest, Sy
ITowed by the € and the P models. The bilinear relation, C, gives j: f
only « slight overestimation of the peak load and reasonably approaches Eﬁ}i'

the descending branch. Keeping ft and Gf constant, the bilinear rela-
tionship could be improved to yield a better match, as done by Roelfstra
and Wittmann (Ref 18) and Carpinteri et al. (Ref 19).

CONCLUSIONS AND RECOMMENDATIONS

The fracture for notched beams in three-point bending was experi-
mentally determined. Three series of tests were conducted on a total of
32 beams and a finite element analysis carried out using a nonlinear
model. The following conclusions were derived:
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¢ The experimental setup led to more reljable and consistent

values of concrete fracture energy and measured crack length.

. Gf* (calculated by current crack size and ligament area) did not
present any substantial advantage over Gf (determined by RILEM
guidelines).

® Finite element analysis yielded accurate representations of the
fracture behavior when coupled with a bilinear stress versus

crack width relation.

. Gf is dependent upon size and geometry. The fracture energy

increases with increasing size.

The inconsistency that arises from applying the FCM approach seems
to be linked to its inability to represent the nonlinearity of the ma-
terial and the energy dissipation outside the fracture zone. The model
assumes all the energy to transform into surface energy through forma-
tion of a single major crack and only introduces nonlinearity in the
stress-crack width relation.

The fracture model for plain concrete should be extended to three-
dimensional applications and to bar-reinforced concrete. To add rein-
forcement, the mechanism for transferring shear from concrete to steel
will need to be modeled, but the technological risk is low.
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28 ENERGY/POWER GENERATION
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systems, energy |oss measurement, power generation)
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energy monitoring and control systems)

31 Fuel flexibility {liquid fuets, coal utilization, energy
from solid waste)

32 Alternate energy source (geothermal power, photovottaic
power systems, solar systems, wind systems, energy storage
systems)

33 Site data and systems integration (energy resource data, energy
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34 ENVIRONMENTAL PROTECTION

35 Solid waste management

36 Hazardous/toxic materials management

37 Wastewater management and sanitary engineering

38 Oil pollution removal and recovery

39 Air pollition
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45 Seafloor soils and foundations
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47 Undersea structures and materiais

48 Anchors and moorings

49 Undersea power systems, electromechanical cables,
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